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Accurate numerical solutions are presented for benchmark problems associated with 
propagation in a wedge with different bottom boundary conditions as well as in a plane-parallel 
waveguide with changing profile with range. The benchmark problems are solved with three 
different general-purpose numerical codes: ( 1 ) a coupled-mode code providing a full-spectrum 
two-way (backscatter included) solution of the wave equation, (2) a finite-difference PE code 
providing a wide-angle solution of the one-way parabolic approximation of the wave equation, 
and (3) a split-step PE code providing a more narrow-angle solution of the one-way parabolic 
approximation of the wave equation. Only the two-way coupled-mode results can be 
considered accurate solutions of the benchmark problems. 

PACS numbers: 43.30.Bp 

INTRODUCTION 

The field of numerical modeling of sound propagation 
has been in continuous expansion over the past 20 years' 
trailing closely the stunning advances in computer technolo- 
gy. Up till around 1970, the only practical technique for 
solving propagation problems in underwater acoustics was 
based on ray theory, which is a computationally efficient but 
approximate (infinite-frequency) solution of the wave equa- 
tion. The ray techniques are still in use for solving high- 
frequency deep-water problems in ocean acoustics. 

In the early 1970s, powerful digital computers became 
available in most research establishments, stimulating the 
development of more accurate frequency-dependent solu- 
tions of the wave equation. These wave-theory solutions (all 
numerically based) encompass normal mode, fast field, and 
parabolic equation techniques.• Today general-purpose nu- 
merical codes based on the above solution techniques are 
widely used for computing the acoustic field in complex 
ocean environments. 

Since closed-form analytic solutions are not available 
for checking the numerical results even for the most simple 
range-dependent environments, we are confronted with the 
fundamental problem of how to ascertain that a numerical 
solution generated by a complex computer program after 
hours of calculation on a multimegafiop machine is an accu- 
rate solution of the posed mathematical problem. There 
seems to be no simple solution to this problem so there is 
always some question about the accuracy of published nu- 
merical results, even when the author has exercised his code 
with the utmost care. 

Some useful steps in a general validation procedure for 
range-dependent acoustic models are: comparison with ana- 
lytic reference solutions for range-independent environ- 
ments; check of energy conservation and reciprocity in the 
solution; intermodel comparison; and comparison with nu- 
merical benchmark solutions for range-dependent environ- 
ments. 

The first two steps are easily carried out by the model 
developer or the model user. The third step requires access to 
alternative models applicable to a given propagation prob- 
lem, but it certainly is a valid check of the implementation of 
a particular numerical solution. The last point is also based 
on intermodel comparisons, but here the test problems are 
carefully selected and a variety of numerical solutions com- 
pared in order to arrive at "accepted" reference solutions, 
which in turn are published with stated accuracy bounds. 
Collectively, these steps serve the general purpose of validat- 
ing a given model and ultimately of improving confidence in 
published numerical results. 

A successful attempt to establish relevant test problem 
solutions for parabolic equation codes was done in connec- 
tion with the PE Workshop held at NORDA in 1981. Sever- 
al low-frequency propagation problems were solved with a 
variety of numerical codes, and reference solutions were 
identified. 2'3 These PE test problems have been extensively 
used in the community over the past 8 years. 

Recently, the issue of establishing reference solutions 
for range-dependent ocean acoustic problems was addressed 
within the Acoustical Society of America (ASA). Special 
sessions at two consecutive ASA meetings were dedicated to 
this problem, and relevant benchmark problems were identi- 
fied and solved? What we present in this paper are our solu- 
tions of the ASA benchmark problems, generated with three 
different general-purpose numerical codes. 

Since wave-theory techniques are computationally slow 
at high frequencies, the ASA benchmark problems concen- 
trate on low-frequency propagation. There is, however, an 
equal need for high-frequency reference solutions, but this 
topic was deferred to the future. Moreover, only simple fluid 
bottoms are considered, leaving also the solution of the elas- 
tic range-dependent problem to the future. 

The accuracy requirement (a fraction ofa decibel) is of 
overwhelming concern in the generation of test problem so- 
lutions, while the calculation time is of little relevance. This 
is quite contrary to the practical use of acoustic models in 
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data analysis, where modeling accuracy of a few decibels is 
often sufficient but where fast computations are essential. 
However, by pushing the numerical model to the extreme in 
terms of accuracy, bugs in the implementation might show 
up, which otherwise would not have been detected. Actual- 
ly, we found errors in two of our codes during the generation 
of accurate benchmark solutions. The errors were small and 

unimportant for practical modeling work, but they could 
conceivably have distorted the solution significantly under 
different propagation situations. As a result of having 
further debugged our codes, we have now increased confi- 
dence in their performance. 

The organization of this paper is as follows: In Sec. I, we 
describe the selected range-dependent benchmark problems, 
three associated with a wedge-shaped waveguide, and one 
with a plane-parallel waveguide. Section II deals with the 
three numerical models used to solve the benchmark prob- 
lems, including theoretical foundation, numerical imple- 
mentation, and procedures for obtaining stable numerical 
results. The benchmark solutions are presented in Sees. III- 
VI, and the paper ends with a summary and conclusions. 

I. THE BENCHMARK PROBLEMS 

Range-dependent ocean scenarios generally include 
changes in both water depth and sound-speed profile with 
range. The ASA benchmark problems 4 were selected so as to 
study these two range-dependent features separately. First, 
we consider propagation upslope in a wedge-shaped homo- 
geneous waveguide, and, second, propagation in a plane-par- 
allel waveguide with range-varying sound-speed structure. 

A. Wedge-shaped waveguide 

The geometry for the wedge problem is given in Table I 
and graphically illustrated in Fig. 1. The environment con- 
sists of a homogeneous water column (c = 1500 m/s, p = 1 
g/cm 3) limited above by a pressure-release flat sea surface 

TABLE I. Benchmark problems associated with a wedge-shaped wave- 
guide. 

1. BENCHMARK WEDGE PROBEMS 

Accurate solutions are invited for upslope acoustic propagation in a wedge 
with the geometry described below. The parameters of the problem are list- 
ed below, including three choices of bottom boundary condition (pressure 
release, case I and two penetrable bottoms, cases II and III). The wedge 
geometry is shown in Fig. 1. 

Parameters common to all three cases. 

wedge angle Oo = 2.86 ø 
frequency f= 25 Hz 
isovelocity sound speed in water column c• = 1500 m/s 
source depth = 100 m 
source range from the wedge apex = 4 km 
water depth at source position = 200 m 
pressure-release surface 

Case 1: pressure-release bottom. 

This problem should be done for a line source parallel to the apex i.e., 2-D 
geometry. 

Case II: penetrable bottom with zero loss. 

sound speed in the bottom c: = 1700 m/s 
density ratio P2/P• = 1.5 
bottom attenuation = 0 

This problem should be done for a point source in cylindrical geometry. 

Case III: penetrable 1ossy bottom. 

As in case II except with bottom loss = 0.5 
OUTPUT 

Plots should be presented on overhead transparencies of propagation loss 
versus range measured from the source to the apex. The scaling should be as 
shown. It is important to conform to this format for the purpose of compari- 
son. The dB scale of propagation loss should cover exactly 50 dB. The start 
and end points of this 50-dB scale should be chosen to ensure that the results 
are entirely contained in the plot. Propagation loss is defined for the present 
purpose as 

PL = -- 101og•o (Intensity at a field point) 
(Intensity at one meter away from source) 

Receiver depths 
Case I: 30 m 

Cases II and III: 30 and 150 m 

0.0kin 

CW 

25 Hz 

200 m 

FREE SURFACE 

4.0 I I / I 

11'11 ....................... .......................... 
............ 

FIG. 1. Wedge geometry for test prob- 
lems 1, 2, and 3. 

1500 J. Acoust. Sec. Am., Vol. 87, No. 4, April 1990 F.B. Jensen and C. M. Forla: Benchmark overview 1500 



and below by a sloping sea floor. The water depth at the 
source position is 200 m decreasing to zero at a distance of 4 
km from the source with a slope of approximately 2.86 ø. Ac- 
curate field solutions are sought for a 25-Hz source placed at 
middepth (100 m) and for two receivers at 30- and 150-m 
depth, respectively. As seen from Fig. 1, the selected receiver 
depths provide samples of the acoustic field in the water 
column as well as in the bottom. The points in range where 
the two receivers cross the water/bottom interface is 3.4 km 

for the shallow receiver and 1.0 km for the deep receiver. 
Three different bottom boundary conditions are consid- 

ered. 

Case 1: Perfectly reflecting pressure-release bottom. 
This is an idealized wedge problem for which an indepen- 
dent reference solution can be formulated. The problem 
should be solved in plane geometry ( line source) with a radi- 
ation condition applied at the left boundary. 

Case 2: Penetrable lossless bottom. This is a slightly ide- 
alized ocean acoustic problem where attenuation in the bot- 
tom has been neglected. The bottom is a homogeneous fluid 
half-space with a compressional speed of 1700 m/s and a 
density of 1.5 g/cm 3. As is customary in ocean acoustics, this 
problem should be solved for a point source in cylindrical 
geometry. 

Case 3: Penetrable 1ossy bottom. This is a more realistic 
ocean acoustic problem where a wave attenuation of 0.5 
dB/A in the bottom has been included. Otherwise param- 
eters are the same as in case 2. 

The reason for considering three different benchmark 
problems for the wedge geometry shall be briefly explained. 
Case 3 is the most realistic ocean acoustic problem (1ossy 
penetrable bottom). However, some numerical codes only 
handle lossless media, and case 2 (lossless penetrable bot- 
tom) was therefore included as an alternative test problem. 
Case I (perfectly reflecting bottom) was chosen simply be- 
cause an analytic reference solution can be formulated for 
the pressure-release wedge. Moreover, since sound propa- 
gating towards the wedge apex will be completely back- 
scattered due to the reflecting boundaries, this test problem 
is an ideal benchmark for a full two-way solution of the wave 
equation. 

B. Plane-parallel waveguide 

This test problem is summarized in Table II and the 
sound-speed profile variation with range is graphically illus- 
trated in Fig. 2. We are considering an idealized waveguide 
with a pressure-release upper boundary and a rigid lower 
boundary. The sound speed in the waveguide varies with 
both depth and range according to the formula given in Ta- 
ble II. Solutions were solicited 4 for a low-frequency shallow- 
water situation ( case 4) as well as for a high-frequency deep- 
water situation (case 5 ). However, since case 5 turned out to 
be computationally prohibitive for the numerical models• on 
hand, we shall here consider just the shallow-water low-fre- 
quency problem, for which the water depth is 500 m and the 
frequency 25 Hz. Accurate field solutions are sought for 
both source and receiver at middepth (250 m) in cylindrical 
geometry. 

TABLE II. Benchmark problems associated with a plane-parallel wave- 
guide. 

2. BENCHMARK RANGE-DEPENDENT PLANE-PARALLEL 
WAVEGUIDE 

Solutions are invited for the sound field (velocity potential) in a plane-par- 
allel waveguide with one pressure release boundary and one rigid boundary. 
The sound-speed profile shows a range dependence given by 

Co 

L 

kL] kL/ ' 

where c o = 15• m/s is a referen• sound s•ed, z is depth •1ow the pr•- 
sure-relic surface, L is the channel depth, and r is range from the source. I• 
and l 2 are parameters with the values: 

li/L = 0.032 12/L = 0.016 

Consider two c•es: 

Case I: (low-frequency, shallow water) 

frequency: f= 25 Hz 
L=5•m 

Case 11: (high-frequency, deep water ) 

frequency: f= 1• Hz 
L=3km 

O•P• 

C•e I: As •fore except that the abscissa (i.e., the range c•rdinate ) should 
• 5 cream, giving a total range coverage of 4 kin. 

Cme II: As •fore except that the abscissa (i.e., the range c•rdinate) 
should • 5 cm/5 kin, giving a total range coverage of 20 km. 

•e field should • •mput• for •th source and r•eiver at depth z 
= L/2. 

Figure 2 shows the change in sound-speed profile with 
range for case 4. Even though we consider propagation over 
a total range of 4 km, we note that the significant profile 
changes occur within the first 400 m. Thus the initial profile 
with a maximum speed of 1877 m/s at the surface and a 
minimum speed of 1346 m/s near middepth, rapidly changes 
to an almost isospeed profile ( 1500 m/s). We shall present 
solutions for two different source conditions: case 4a, a 
beam-limited source of width + 43 ø obtained by summing 
the first 10 source modes; and case 4b, an omnidirectional 
source obtained by summing all 17 source modes. 

The above test problem clearly does not represent a real- 
istic ocean acoustic environment. Both the rigid bottom 
boundary condition and the extreme sound speed variations 
with depth and range within the waveguide are physically 
unrealistic. However, this problem was chosen because an 
independent reference solution can be formulated for this 
particular environment. 

II. THE NUMERICAL MODELS 

Numerical implementations of wave-theory solutions 
for range-dependent acoustic problems can be classified as: 
normal-mode techniques (adiabatic or coupled modes); 
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FIG. 2. Change in sound-speed profile with range 
for test problem 4. Note that the profile changes 
to isoveloeity (1500 m/s) essentially within the 
first 400 m. The initial profile has a maximum 
speed of 1877 m/s at the surface and a minimum 
speed of 1346 m/s near middepth. 

0.4 

parabolic-approximation techniques (narrow- or wide-an- 
gle parabolic equations solved by split-step or finite-differ- 
ence techniques); and finite-element/finite-difference solu- 
tions of the full wave equation. 

The mode techniques provide approximate field solu- 
tions if implemented in the adiabatic approximation, while 
complete wave theory solutions can be obtained by including 
full mode coupling. We shall here apply a stepwise coupled 
mode code to obtain reference solutions for the various 

benchmark problems. 
Parabolic approximations to the elliptic wave equation 

have been extensively studied over the past 10 years? The 
advantage of using a parabolic wave equation is that it can be 
efficiently solved by noniterative forward marching tech- 
niques. However, any form of the parabolic equation is an 
approximate wave equation derived under the assumption 
of: (1) forward propagation only, and (2) that energy is 
propagating within a limited angular spectrum around the 
main propagation direction. There are two groups of PE 
codes, those using the split-step Fourier solution technique, 
and those using an implicit finite-difference scheme. Various 
forms of the parabolic equation can be solved with each tech- 
nique (differences being associated with the angular spectral 
limitation), but here we shall exercise just the two most com- 
monly used wide-angle PE codes. 

The last category of models based on finite-difference 
and finite-element solutions of the full wave equation is well 
suited for providing benchmark solutions for propagation in 
general range-dependent environments. The existing codes, 
however, are extremely computer intensive and shall not be 
applied in this study. 

A. Coupled modes (COUPLE) 

A complete two-way solution for wave propagation in 
range-dependent fluid media can be formulated in terms of 
stepwise-coupled normal modes. 6 This technique consists in 
subdividing the environment into a number of range seg- 
ments each with range-invariant properties, but with 
allowance for arbitrary variation of sound speed, density, 

and attenuation with depth. Hence, a continuously varying 
sound-speed profile with range would be approximated by a 
number of constant-profile segments, with small changes in 
profile from segment to segment. Similarly, a sloping bottom 
environment would be approximated by a series of constant 
depth segments, with slight changes in water depth from 
segment to segment. In both cases, the discretely segmented 
environment approaches the continuously varying environ- 
ment for increasing number of range segments. 

After having discretized the environment, the normal 
modes associated with each range segment are computed. By 
requiring continuity of pressure and horizontal particle ve- 
locity across segment boundaries and by imposing a known 
source condition at range zero together with a radiation con- 
dition at range infinity, a solution for the acoustic field based 
on propagator matrices can be constructed. The full solution 
is energy conserving and includes both forward and back- 
scattered energy. 

Most of the coml•utational effort is associated with com- 
puting a full modal spectrum for each range segment. The 
approach selected in Ref. 6 is a discretization of the mode 
spectrum by introducing a pressure-release false bottom far 
below the water/bottom interface. This means that the full 

mode spectrum consists of proper guided modes (discrete 
spectrum), as well as of nonproper modes representing the 
continuous mode spectrum. The number of nonproper 
modes increases with false bottom depth, and only in the 
limit of an infinitely deep false bottom do we have an exact 
representation of the continuous mode spectrum. The modal 
eigenvalue problem is solved using the Galerkin method, 7 
which transforms the search for complex eigenvalues into a 
tractable matrix eigenvalue problem by expanding the solu- 
tion in terms of a basis set of isovelocity modes. This ap- 
proach, however, requires the computation of a sufficiently 
large basis set to accurately represent the modes of the prob- 
lem in each range segment. More details on the mathemat- 
ical formulation and numerical implementation of the cou- 
pled-mode solution can be found in Refs. 6 and 7. 

The particular numerical code COUPLE used in this 
study was developed in its original form by Evans. g How- 
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ever, several nontrivial modifications were introduced by us 
in order to be able to do all test problems. Thus the code was 
generalized to handle a multiprofile environment, to propa- 
gate a subset of the modes present at the source, to apply 
either a radiating or reflecting boundary condition at the 
source, and to provide results in either plane or cylindrical 
geometry. 

The generation of accurate numerical solutions with 
COUPLE is a nontrivial exercise. Particular attention must 

be paid to a proper testing of the solution convergence with a 
number of user-specified input parameters. The most impor- 
taRt ones a•e: 

( 1 ) Number of range segments used for representing a 
continuously varying profile or a constant bottom slope. 
This number must be increased until the solution stabilizes. 

As shown in Table III, we needed between 200 and 1000 
range segments to solve the various benchmark problems 
accurately. 

(2) Depth of the false bottom. This depth must be in- 
creased until the continuous mode spectrum is well sampled. 

(3) Number of isovelocity basis modes used in the cal- 
culation. This number must be high enough to accurately 
represent the real modes of the problem. 

With considerable care and attention, we obtained con- 
vergent solutions for all benchmark problems to a precision 
of the line thickness used in the graphical display of the re- 
sults. Considering further that the coupled-mode solution 
intrinsically is a full-spectrum two-way solution of the wave 
equation, we have confidence that the COUPLE results pre- 
sented in this paper are accurate numerical solutions of the 
posed mathematical problems. 

B. Finite-difference PE (IFDPE) 

The particular numerical code (IFDPE) used in this 
study was developed by Lee et al. •-• It solves a wide-angle 
parabolic equation due to Claerbout by implicit finite differ- 
ences. The solution is set up for a finite depth domain limited 
above by a flat sea surface and below by a reflecting false 
bottom, which should be placed far below the water/bottom 

interface. To avoid reflections from the false bottom, a high 
bottom attenuation is introduced in the lower portion of the 
depth domain. The environment is discretized in depth and 
range, and starting from a known source-field distribution 
over depth at range zero, the solution can be advanced step- 
wise in range taking into account environmental changes as 
the solution progresses. Most of the computational effort is 
associated with advancing the solution in range, while envir- 
onmental updates require little computational effort. Hence, 
it is possible to change sound-speed profile and water depth 
at each range step without a significant increase in calcula- 
tion time. 

The generation of accurate IFDPE results requires at- 
tention to several user-specified input parameters. The most 
important ones are: 

(1) Starting field at source range. Since we generally 
attempt to model the field radiated by an omnidirectional 
point source, it is important to use a wide-angle source with a 
beamwidth that is compatible with the angular limitations 
inherent in the parabolic equation being solved. In the 
benchmark problems, we used Greene's wide-angle sonrce t: 
for test cases 2 and 3, and a modal source for case 4. 

(2) False bottom depth. The false bottom must be 
placed deep enough that the field solution in the waveguide 
is not contaminated by spurious boundary reflections. 

(3) Reference sound speed. In general, a reasonable 
choice is to set the reference speed equal to the average speed 
ofthe propagation duct. In multipath situations, a change in 
reference speed will cause slight shifts in the interference 
pattern, and a careful selection of this parameter can signifi- 
cantly improve the overall accuracy of the solution, particu- 
larly in wide-angle problems. 

(4) Spatial discretization in range and depth. There is 
no simple rule for a priori determination of range and depth 
increments. Essentially, these parameters must be deter- 
mined through a convergence test, where Ar and Az are de- 
creased until the solution stabilizes. Due to the fact that en- 

ergy is propagating within a limited angular spectrum 
around the horizontal (principal propagation direction), we 
can use considerably larger range increments than depth in- 

TABLE IlL Numerical parameters and CPU times for the various benchmark solutions. 

Test Source •: stair steps # modes in CPU time on 
case Model field Ar(m) A•(m) z,a, (m) ca(m/s) or profiles COUPLE FPS-164 

I COUPLE modal ...... 1000 --. :500 10 10 min 

2 COUPLE modal ...... 3000 --. 200 90 3 X 8 h 
IFDPE Greene 5.0 1.0 4000 1500 ...... 7 rain 
PAREQ Greene 5.0 0.65 1333 1500 ...... I min 

COUPLE modal ...... 3000 --- 200 90 8 h 
IFDPE Greene 5.0 0.5 2000 1500 ...... 7 min 
PAREQ Greene 5.0 0.65 1333 1500 ...... I rain 

COUPLE modal ...... 1000 .-- 1000 17 2.5 h 
IFDPE modal 1.0 0.5 500 1700 1000 ..- 8 min 

COUPLE modal ...... 1003 --- 1000 30 6.5 h 
IFDPE modal 0.5 0.25 500 1700 1000 --- 15 rain 

4A 

4B 
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crements. As shown in Table III, we obtained stable solu- 
tions for the various test problems with Ar = 2-10 Az. How- 
ever, the the spatial grid size is in all cases much smaller than 
an acoustic wavelength. 

The IFDPE code was successfully applied to test pt, ob- 
lems 2, 3, and 4. It appears that this wide-angle code accu- 
rately handles propagation within + 40 ø from the horizon- 
tal in the forward-scattered approximation. Moreover, the 
IFDPE is computationally efficient being 10-100 times fas- 
ter than the coupled-mode code. 

C. Split-step PE (PAREQ) 

The classical parabolic solution technique is the split- 
step Fourier algorithm, •3'•4 which is computationally effi- 
cient but can be applied only to a certain class of parabolic 
equations. Thus the wide-angle Claerbout equation is not 
solvable with the split-step technique. However, Thomson 
and Chapman TM derived a moderately wide-angled equation, 
which is the basis for the split-step PE results shown in this 
study. 

The actual computer code used (PAREQ) •5 is based on 
an environmental description with discretization in depth 
and range similar to that outlined in Sec. IIB. The main 
difference is that the field solution here is advanced by doing 
successive Fourier transforms over depth. Again, the 
source-field distribution must be specified (Gaussian, 
Greene, or modal source) together with the false bottom 
depth and the reference sound speed. Finally, range and 
depth increments are determined through a convergence 
test. Essentially, the detailed comments made in Sec. IIB for 
ensuring accurate solutions with the finite-difference tech- 
nique, also apply to the split-step technique. 

The PAREQ code was only used for solving test prob- 
lems 2 and 3. The Thomson-Chapman equation is clearly 
more narrow angle than the Claerbout equation and conse- 
quently provides less accurate results for the relatively wide- 
angle test problems. It appears that the effective beamwidth 
is around 4- 20 ø compared to 4- 40 ø for the Claerbout equa- 
tion. However, the PAREQ code is computationally effi. 
cient. Numerically convergent solutions of the test problems 
were obtained five-ten times faster than with the IFDPE 
code. 

III. CASE 1: WEDGE WITH PRESSURE-RELEASE 
BOUNDARIES 

Numerical parameters and CPU times for the various 
benchmark solutions are summarized in Table III. It is evi- 
dent that the computational effort needed in each case de- 
pends on the required accuracy of the numerical solution. 
The results presented here are all accurate (numerically con- 
vergent) to within the line thickness used in the graphical 
displays of the results. The CPU times given in the last col- 
umn of Table III refer to an FPS-164 attached processor. 
The corresponding times for two commonly used VAX com- 
puters (8600 and 780) are obtained by multiplying by a fac- 
tor 4 for a VAX-8600 and by a factor 12 for a VAX-780. 

Test case I is a wedge-shaped waveguide with pressure- 
release perfectly reflecting boundaries. Since sound propa- 

gating towards the apex will be completely backscattered, 
any attempt to solve this problem should be based on a two- 
way solution of the wave equation. Consequently, the para- 
bolic equation codes were not considered, and results are 
provided only by the coupled-mode model. 

A. COUPLE results 

Propagation in the pressure-release wedge is character- 
ized by the presence of 6 discrete modes at the source range. 
However, due to symmetry in the problem (source at mid- 
depth) only the odd-numbered modes are excited. Hence, 
the acoustic field is initially composed of 3 modes ( 1, 3, and 
5) which propagate upslope towards the apex until first 
mode 5 reaches its critical depth and is turned around fol- 
lowed by modes 3 and 1, which reach their critical depths 
further upslope. Evidence of this mode stripping effect can 
be seen in Fig. 3 (a), which displays the outgoing coupled- 
mode solution. In the first kilometer, we see a characteristic 
3-mode interference pattern, followed by a 2-mode pattern 
up to around 2.2 km from the source, and then a single-mode 
region extending to a range of 3.4 km. No energy propagates 
beyond the critical depth for mode 1. 

The full two-way solution is given in Fig. 3(b). This 
result is structurally similar to the one-way result, but with a 
higher mean level of 4-5 dB. We also notice the rapidly vary- 
ing multipath structure due to interference between incom- 
ing and outgoing waves. For easier comparison with alterna- 
tive solutions, we present in Fig. 4 an expanded view of the 
COUPLE two-way solution covering just the first kilometer. 

As shown in Table III, a stable COUPLE solution be- 

Benchmark 1 

0 •Mi •p• ......... I .... boH•om (a) 

40- 

5O 

I v : 250 Hz 

-- COUPLE (l-way) $D: 100.0 m RD: 30.0 m 

(b) 
-- COUPLE (a-way) 

4O 

50 
o 2 3 4 

Range (kin) 

FIG. 3. Coupled-mode solutions for wedge with pressure-release bottom. 
(a) Outgoing solution only, (b) full two-way solution. 
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Benchmark 1 

--- COUPL• (:•-way) SD. too.o m 

O.O 0.2 0.4 0.8 O.B ] .0 
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FIG. 4. Expanded view (0-1 km) of COUPLE two-way solution for wedge 
with pressure-release bottom. 

yond the nearfield ( > 100 m) was obtained by subdividing 
the sloping bottom into 500 stair steps and by including 10 
modes in the computations (6 propagating modes and 4 non- 
propagating horizontally evanescent modes). To obtain 
convergence also in the nearfield, more evanescent modes 
need to be included, which, however, was not possible due to 
numerical overflow problems. Particular attention was paid 
to the correct handling of the pressure-release bottom 
boundary condition. By comparison with known reference 
solutions for range-independent environments, it was found 
that a pressure-release bottom was correctly simulated in 
COUPLE by using a high bottom speed of 10 •ø m/s and a 
low density of 10 -4 g/cm •, and with the false bottom placed 
at 1000-m depth. Full two-way solutions were obtained 
within 10 rain on the FPS-164. 

To assess the absolute accuracy of the COUPLE results 
presented in Figs. 3 and 4, we can compare our solutions to 
the reference provided by Buckingham and Tolstoy,•6 who 
formulated a solution for the pressure-release wedge in 
terms of the natural modes of the wedge. This is a conceptu- 
ally simpler approach than used by COUPLE (no range dis- 
cretization is required), which should provide accurate and 
reliable results for this particular propagation problem. The 
COUPLE results are found to be in excellent agreement with 
the reference solutions beyond the nearfield. Buckingham 
and Tolstoy'6 show that it is necessary to include around 100 
evanescent modes to obtain accurate nearfield results. Based 

on the above comparison we can conclude that, except for 
very near the source ( < 100 m), the COUPLE results in 
Figs. 3 and 4 are accurate to within a few tenths ofa decibel. 

IV. CASE 2: WEDGE WITH PENETRABLE LOSSLESS 
BOTTOM 

Test case 2 is a wedge-shaped homogeneous ocean 
(1500 m/s) overlying a homogeneous fast bottom with a 
speed of 1700 m/s, a density of 1.5 g/cm •, and an attenuation 
of 0.0 dB/A. These bottom propertieg result in perfect reflec- 
tion for waterborne-energy incident at angles up to the criti- 
cal grazing angle of 28 ø (discrete mode spectrum), while 
energy incident at steeper angles (continuous mode spec- 
trum) is subject to increasing reflection loss with angle, with 

a maximum loss of approximately 12 dB per bounce at nor- 
mal incidence. 

Since upslope propagation is characterized by the stec- 
pening of ray paths at each bottom bounce, all of the energy 
radiated by the source will eventually interact with the bot- 
tom at angles greater than the critical angle and penetrate 
into the bottom. Hence, upslope propagation in a wedge with 
a penetrable bottom is characterized by the forward radi- 
ation of sound into the bottom at the mode cutoff range, 
rather than by the backscattering of sound within the water 
column as was the case for the pressure-release wedge. Con- 
sequently, we are here dealing with a propagation situation 
that seems well suited for being modeled by parabolic equa- 
tion codes. Coupled-mode solutions, however, are needed as 
a reference to cheek the importance ofbackscattering as well 
as of the angular spectrum limitations associated with the 
parabolic wave equations. 

A. COUPLE results 

One- and two-way COUPLE solutions for test problem 
2 are shown in Fig. 5. For both receiver depths, the differ- 
ence between one- and two-way results is seen to be approxi- 
mately 2 dB at longer ranges. It should be pointed out that 
this level difference does not imply that backscattering is sig- 
nificant in this test problem. Instead, it shows that an ap- 
proximate formulation (outgoing waves only) of the com- 
plete two-way solution can lead to significant errors in the 
computed sound levels (2 dB in this case). More precisely, 
we can state that a one-way solution will generally not be an 
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FIG. 5. Coupled-mode solutions for wedge with lossless penetrable bottom. 
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between one-way and two-way results of about 2 dB at longer ranges. 
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accurate representation of the outgoing-toaoe component of 
the full two-toay solution. Evidence of the lack of back- 
scattered energy for the penetrable-wedge problems was first 
shown in the ray solutions generated by Westwood ]7 and 
subsequently eordirmed by us by displaying separately the 
outgoing and incoming wave components of the full two- 
way COUPLE solution. The backscattered field is indeed 
very weak in this case being around 40 dB lower in level than 
the forward-propagating field component. In this context, it 
is interesting to note that the IFDPE formulation handles 
one-way propagation in the same approximation as the one- 
way coupled-mode solution (Fig. 6). 

Propagation in test problem 2 is characterized by the 
presence of three discrete modes at the source range. How- 
ever, to produce a full-spectrum solution, it was necessary to 
compute a total of 90 modes, 3 proper discrete modes, and 87 
nonproper modes, with the false bottom placed at a depth of 
3000 m. The primary difficulty encountered in obtaining sta- 
ble numerical results for this test problem was associated 
with the eliminations of reflections off the false bottom. 

Since there is no loss in the real bottom, energy radiated at 
steep angles from the source will travel down to the false 
bottom and back to the water without attenuation and hence 
contaminate the solution. 

We found that the only practical solution to this prob- 
lem was to limit the beamwidth of the source. Thus, if we 
consider a maximum beamwidth of q- 35 ø, which means 
limiting the number of computed source modes, the steepest 
traveling energy when reflected off the false bottom will ap- 
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FIG. 6. Comparison of one-way results from COUPLE and IFDPE for 
wedge with lossless penetrable bottom. (a) Receiver at 30 m, ( b ) receiver at 
150m. 

pear in the water column beyond a range of 4 km and there- 
fore not contaminate our results. However, such a solution is 
inaccurate at short ranges from the source where high-angle 
energy ( > 35 ø) contributes significantly to the field solution. 
It turned out that for a false bottom at depth 3000 m and 
with a q- 90ø-source beamwidth, spurious reflections appear 
at a range of approximately 260 m from the source. If we 
now limit the beamwidth to q- 60 ø the false-bottom reflec- 
tions are shifted out in range to around 1200 m from the 
source, while a q- 35 ø beamwidth does not produce false re- 
fleetions within our observation range. By carefully piecing 
together the full solution from the above three range-limited 
solutions (with overlap points chosen where adjacent solu- 
tions agreed to within 0.1 dB), we obtained the results dis- 
played in Fig. 5. As shown in Table III, this benchmark 
solution required 8 h of CPU time on the FPS- 164 for each 
source beamwidth, using a subdivision of the slope into 200 
stair steps. 

Even though the full-spectrum COUPLE solution for 
this test problem was construction from three partial solu- 
tions, we are confident that the two-way results given in Fig. 
5 are accurate to within a fraction ofa deeibel. This conclu- 

sion is based on the fact that the penetrable wedge represents 
a slightly more benign environment for the solution tech- 
nique employed in COUPLE than the pressure-release 
wedge, for which we obtained accurate results to within a 
few tenths of a deeibel. 

B. IFDPE results 

IFDPE solutions for the penetrable wedge are com- 
pared with one-way COUPLE results in Fig. 6. The agree- 
ment is excellent indicating that one-way propagation in this 
environment is handled well by the wide-angle Claerbout 
equation. Numerically convergent results were obtained 
with the parameters given in Table III in just 7 rain on the 
FPS- 164. Note that the false bottom was placed at a depth of 
40• m in an attempt to avoid spurious reflections. We suc- 
ceeded except in the deep interference null at range 3 km in 
Fig. 6(b), where the IFDPE solution is clearly noisy. This 
problem could have been solved by moving the false bottom 
still further down, but array limitations in the code pre- 
cluded this solution. The primary reason for having less 
problems with false bottom reflections in the IFDPE solu- 
tion than in the coupled-mode solution, is the presence of a 
deep artificial attenuation layer in the PE environment intro- 
duced to simulate a lower-boundary radiation condition (see 
Sec. II B). 

G. PARœO results 

More narrow-angle parabolic equation results obtained 
from PAREQ are compared with one-way COUPLE solu- 
tions in Fig. 7. The agreement here is less satisfactory, indi- 
cating that the angular limitations associated with the 
Thomson-Chapman equation ( q- 20 ø) are too restrictive 
for this test problem. This conclusion might have been an- 
ticipated considering that the radiation of sound into the 
bottom during mode cutoff is associated with propagation 
angles above the critical grazing angle of 28 ø. Hence, an ae- 
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FIG. 7. Comparison of one-way results from COUPLE and PAREQ for 
wedge with lossless penetrable bottom. (a) Receiver at 30 m, (b) receiver at 
150 m. 

curate solution of this test problem requires a wide-angle PE 
capability similar to that offered by the Claerbout equation. 

V. CASE 3: WEDGE WITH PENETRABLE LOSSY 

BOTTOM 

This is a more realistic ocean acoustic problem where a 
bottom attenuation of 0.5 dB/,t has been included. Other- 

wise, parameters are the same as in case 2. 

A. COUPLE results 

An illustrative 2-D field solution generated by the cou- 
pled-mode code is shown in Fig. 8. We notice that radiation 
into the bottom is particularly evident at short ranges and 
around 3.5 km where the fundamental mode is cut off. Also 

shown are horizontal dashed lines corresponding to stan- 
dard transmission loss displays for receivers at 30- and 150- 
m depth. 

One- and two-way COUPLE solutions for test problem 
3 are shown in Fig. 9. These results are very similar to the 
ones obtained for the lossless penetrable bottom in case 2. 
Again, we see that the one-way approximation results in 2- 
dB errors in computed levels at longer ranges. 

Due to the presence of a realistic bottom loss of 0.5 
dB//{, steep-angle energy reflected off the false bottom at 
3000-m depth will undergo sufficient attenuation (- 40 
dB) so as not to contaminate the results in the upper 150 m 
of the solution domain. Consequently, we can do a full-spec- 
trum ( + 90*) COUPLE solution in a single solution pass. 

Stable numerical results to within the line thickness 

used in the graphical displays were obtained by including 90 
modes and by subdividing the slope into 200 stair steps. As 
shown in Table lII, this calculation required 8 h of CPU time 
on the FPS-164. Since the numerical solution of this case 

presented fewer complications than for test problem 2, we 
are confident that the two-way results presented in Fig. 9 
constitute a reference solution to test problem 3 to within an 
accuracy of a few tenths of a decibel. 

B. IFDPE results 

IFDPE solutions for test problem 3 are compared with 
one-way COUPLE results in Fig. 10. The agreement is excel- 
lent indicating that one-way propagation in this environ- 
ment is accurately handled by the wide-angle Claerbout 
equation. Numerically convergent results were obtained 
with the parameters given in Table III. Note the much lower 
computational effort required to generate a parabolic equa- 
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FIG. 9. Coupled-mode solutions for wedge with Iossy penetrable bottom. 
(a) Receiver at 30 m, (b) receiver at 150 m. Note the level difference 
between one-way and two-way results of about 2 dB at longer ranges, 

tion result compared to a full-spectrum two-way coupled- 
mode result. 

C. PAREQ results 

A comparison of narrow-angle PAREQ results with 
one-way COUPLE reference solutions are given in Fig. 11. 
Here the agreement is less satisfactory indicating that the 
angular-spectrum limitations associated with the Thomson- 
Champman equation ( + 20 •) are too restrictive for this test 
problem. The PAREQ results were generated in less than 1 
min on the FPS- 164 using the numerical parameters given in 
Table III. 

VI. CASE 4: PLANE-PARALLEL WAVEGUIDE 

We are here considering an inhomogeneous waveguide 
limited above by a pressure-release surface and below by a 
rigid bottom. As shown in Fig. 2, the range dependence is 
entirely associated with the varying sound-speed profile with 
range. We shall present COUPLE and IFDPE results for 
two different source beamwidths, a beam-limited source of 
width -I- 43øobtaJnedby summing the first 10source modes, 
and an omnidirectional source obtained by summing all 17 
source modes. 

A. COUPLE results 

One- and two-way COUPLE solutions for test problem 
4A ( 10 source modes) are shown in Fig. 12 ( a ), while results 
for case 4B ( 17 source modes) are given in Fig. 13(a). The 
small differences between one- and two-way solutions in Fig. 
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FIG. 10. Comparison of one-way results from COUPLE and IPDPE for 
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12(a) are probably within the overall numerical accuracy of 
the solutions. 

As shown in Table III, stable COUPLE solutions were 
obtained by approximating the continuous sound-speed 
variation in range with 1000 discretely changing profiles. 
Moreover, since profile changes are strongest near the 
source, we introduced a nonequidistant range segmentation. 
To obtain stable numerical results for the 10-mode problem, 
we had to include 17 isovelocity basis modes in the calcula- 
tions. Likewise, 30 basis modes were needed to solve the 17- 
mode problem. Particular attention was paid to the correct 
handling of the rigid bottom boundary condition. By com- 
parison with known reference solutions for range-indepen- 
dent environments, it was found that a rigid bottom was 
correctly simulated in COUPLE by using ahigh speed ( I0 Iø 
m/s) as well as a high density (10 • g/cm3), and with the 
false bottom placed at 1000-m depth. Full COUPLE solu- 
tions required 2.5 h of CPU time for case 4A and 6.5 h for 
case 4B. 

To assess the absolute accuracy of the COUPLE results 
presented in Fig. 12 (a), we can compare our solutions to the 
reference provided by Thomson et al., 's who numerically 
implemented a solution derived by DeSanto '9 for this partic- 
ular propagation problem based on conformal mapping 
techniques. This reference solution essentially treats a range- 
independent homogeneous-waveguide problem in mapped 
coordinates and, hence, circumvents the requirement for a 
discretization of the sound-speed profile in range. The COU- 
PLE results are found to be in excellent agreement with the 
reference solutions, is again confirming the reliability and 
correctness of the coupled-mode results. Based on the above 
comparison, we can conclude that the COUPLE benchmark 
solutions presented in Figs. 12(a) and 13(a) are accurate to 
within 1 dB. 

B. IFDPE results 

The IFDPE solution for the beam-limited source (10 
modes) is compared with the one-way COUPLE result in 
Fig. 12(b). The agreement is very good indicating that this 
propagation situation is well handled by the wide-angle 
Claerbout equation. Best agreement was achieved with a PE- 
reference sound speed of 1700 m/s. 

Results for the omnidirectional source ( 17 modes) are 
compared in Fig. 13 (b). Here, there is poor agreement in the 
multipath-interference structure due to the angular limita- 
tions inherent in the parabolic wave equation, and no im- 
provement was possible by changing the reference sound 
speed. 

These two test problems essentially confirm the angular 
spectral limitation of + 40 ø in the Claerbout equation. Nu- 
merically convergent results were obtained with the param- 
eters given in Table III. Note that wide-angle propagation 
situations generally require smaller spatial solution grids for 
numerical accuracy. The IFDPE code is again seen to be 
computationally efficient (8 and 15 min for the two test 
problems) compared to the coupled-mode code. 
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VII. SUMMARY AND CONCLUSIONS 

We have presented solutions for four different range- 
dependent ocean acoustic problems chosen as benchmarks 
for validating general-purpose numerical codes. Apart from 
the important observation that one-way wave equations do 
not provide accurate results for propagation over sloping 
bottoms, the performance of the three different acoustic 
models exercised on the test problems can be summarized as 
follows. 

( 1 ) COUPLE provides a full-spectrum two-way solu- 
tion of the elliptic-wave equation based on stepwise-coupled 
normal modes. This code is ideally suited for providing 
benchmark results in general range-dependent ocean envi- 
ronments. The solution technique is computationally slow 
and therefore impractical at higher frequencies, but results 
for the four benchmark problems were generated with an 
estimated accuracy of less than 1 dB. 

(2) IFDPE provides a limited-spectrum one-way solu- 
tion of the parabolic approximation to the full wave equa- 
tion. The implicit finite-difference solution technique is 
computationally efficient, and accurate one-way results are 
provided for energy propagating within ñ 40 ø with respect 
to the horizontal. 

(3) PAREQ provides a narrow-angle one-way solution 
of the parabolic approximation to the full wave equation. 
The split-step Fourier solution technique is computationally 
efficient, and accurate one-way results are provided for ener- 
gy propagating within d- 20 ø with respect to the horizontal. 

In conclusion, we feel that the benchmark solutions pre- 
sented here should be useful in future model validation tests. 

Moreover, the reported calculation times, though not opti- 
mized in this study, could be considered a point of reference 
for future model developers. Thus any code that can repro- 
duce the results published here with significantly less com- 
putational effort truly represents a progress in range-depen- 
dent ocean acoustic modeling. 
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